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Biochar has been heralded as an amendment to revitalize degraded 
soils, improve soil carbon sequestration, increase agronomic 
productivity, and enter into future carbon trading markets. 
However, scientifi c and economic technicalities may limit the 
ability of biochar to consistently deliver on these expectations. 
Past research has demonstrated that biochar is part of the black 
carbon continuum with variable properties due to the net result 
of production (e.g., feedstock and pyrolysis conditions) and 
postproduction factors (storage or activation). Th erefore, biochar 
is not a single entity but rather spans a wide range of black carbon 
forms. Biochar is black carbon, but not all black carbon is biochar. 
Agronomic benefi ts arising from biochar additions to degraded 
soils have been emphasized, but negligible and negative agronomic 
eff ects have also been reported. Fifty percent of the reviewed 
studies reported yield increases after black carbon or biochar 
additions, with the remainder of the studies reporting alarming 
decreases to no signifi cant diff erences. Hardwood biochar (black 
carbon) produced by traditional methods (kilns or soil pits) 
possessed the most consistent yield increases when added to soils. 
Th e universality of this conclusion requires further evaluation due 
to the highly skewed feedstock preferences within existing studies. 
With global population expanding while the amount of arable land 
remains limited, restoring soil quality to nonproductive soils could 
be key to meeting future global food production, food security, 
and energy supplies; biochar may play a role in this endeavor. 
Biochar economics are often marginally viable and are tightly tied 
to the assumed duration of agronomic benefi ts. Further research 
is needed to determine the conditions under which biochar can 
provide economic and agronomic benefi ts and to elucidate the 
fundamental mechanisms responsible for these benefi ts.
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B
lack carbon (BC) is the name given to the spectrum 

of chemical–thermal solid conversion products formed 

from carbonaceous materials, which could be biomass 

or fossil fuels (Goldberg, 1985; Masiello et al., 2002). Th e BC 

continuum contains all charred residues, with a lack of consis-

tency over terminology ranging from char, charcoal, bone char, 

carbon ash, carbon black, black carbon, carbonized carbon, 

coke, and soot (Jones et al., 1997; Masiello, 2004). Recently, 

biochar has been added to this BC terminology mixture. In this 

review, the term BC is used for the carbonaceous solid byprod-

uct of the chemical–thermal conversion of any carbon-contain-

ing material that may or may not be biomass. Biochar refers 

to BC that is produced as a vehicle of carbon sequestration 

from renewable and sustainable biomass (Lehmann, 2007). 

Th erefore, biochar is BC, but not all BC is biochar.

Black carbon has been applied to soils virtually from the 

dawn of civilization, since fi re pits were built on soil, and 

associated research can be documented to the start of modern 

science (Lefroy, 1883; Hall, 1910). In addition, BC use in 

agriculture dates back at least to the early 1600s in Japan and 

potentially earlier in China (cited in Ogawa and Okimori, 

2010). Th ese purposeful BC applications, combined with the 

natural deposition of BC (e.g., forest fi res, prairie fi res, vol-

canoes), have resulted in the widespread presence of BC in 

the soil organic matter pool (Skjemstad et al., 2002). Th e fi rst 

use of the term biochar was around 1998 for the solid residual 

of biomass pyrolysis (Bapat and Manahan, 1998). In the late 

1980s, there was an immense shift in the intended purpose 

for biomass pyrolysis—from an energy and chemical resource 

to a means of atmospheric carbon sequestration (Goldberg, 

1985; Kuhlbusch and Crutzen, 1995). Th is alteration of pur-

pose has prompted a shift in referring to BC that is produced 
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for carbon sequestration purposes (assumed to be applied to 

soils) as biochar (Karaosmanoglu et al., 2000; Lehmann, 2007; 

Laird, 2008).

Th e current application of biochar to soil is modeled after 

the Amazonian Terra Preta soils, which have higher soil fertil-

ity believed to result from intentional BC additions from “slash 

and char” agricultural practices (Mishra and Ramakrishnan, 

1983; German, 2003; Mann, 2005). However, BC additions 

to soils have not uniformly resulted in soil fertility improve-

ments. Charcoal spots (historical charcoal production sites) 

in Zambian forests possess slower plant regeneration rates 

than surrounding areas without BC remnants (Chidumayo, 

1988), and the long-term application of pyrolysis products 

to soils at historical US wood pyrolysis plants (wood distil-

lation) that occurred from 1800 to 1960 raised soil organic 

chemical concentrations to such high levels that some sites 

are included in the U.S. Environmental Protection Agency’s 

Superfund program (Erstfeld and Snow-Ashbrook, 1999; 

Edenborn and Severson, 2007). Due to these diverse poten-

tial environmental impacts arising from soil application of 

biomass pyrolysis products, it is important to summarize 

existing observations and to document current gaps in our 

understanding of biochar’s potential impacts, both positive 

and negative, to guide future use.

Biochar Production
Pyrolysis refers to the process of thermochemical decomposi-

tion of organic material at elevated temperatures in the absence 

of oxygen (Bridgwater, 1994). Th ere are three product streams 

from pyrolysis: (i) noncondensable gases, (ii) a combustible 

bio-oil representing the condensable liquids (tars), (iii) and bio-

char, a solid residual coproduct. Pyrolysis of biomass dates back 

at least 5000 yr when the Egyptians formed pyroligneous acid 

(wood vinegar, tars, and smoke condensates or bio-oil) used 

for embalming (Baumann, 1960). Biomass pyrolysis products 

served as chemical and energy sources for the next ~5000 yr. 

Wood pyrolysis peaked in the early 1900s with the “standard 

distillation apparatus” (retort) that processed 10 cords of wood 

(25 Mg) within a 24-h period (Hawley, 1926). Biomass pyroly-

sis was replaced by coal in the 1800s as an energy source and 

by crude oil (petroleum) in the 1920s as a chemical source due 

to the improved economics of nonrenewable fossil fuels, the 

improved distillation effi  ciency of the higher-purity petroluem 

products, and the decline of woody resources in proximity to 

pyrolysis plants (Owen, 1975; Edenborn and Severson, 2007).

Pyrolysis can be an endothermic or exothermic reaction 

depending on the temperature of the reactants, becoming 

increasingly exothermic as the reaction temperature decreases 

(Mok and Antal, 1983). Th e exothermicity of the slow pyroly-

sis reaction per unit of biochar yield is reported to range from 

2.0 to 3.2 kJ g−1 char (Mok and Antal, 1983; Milosavljevic et 

al., 1996). Hence, because the fi xed carbon content of biomass 

is high, biochar formation commences at low temperatures 

where autogeneous pyrolysis begins (Mok and Antal, 1983; 

Milosavljevic et al., 1996). Th e self-sustaining nature of the 

low-temperature reaction explains why traditional methods 

of making charcoal, where biomass was buried underground, 

could carry on for days.

Current biochar production is focused on advanced 

pyrolysis systems (Bridgwater et al., 1999; Boateng et al., 

2007; Zhang et al., 2007; Boateng et al., 2010b; Lima et 

al., 2010; Lima and Marshall, 2010). However, traditional 

charcoal production technologies are still used (Major et al., 

2010b). Advanced conversion systems (Table 1) allow pre-

cise control of operating conditions, which, coupled with 

feedstock selection, can regulate the physical and chemical 

properties of biochar (Table 2) and allow for customization 

of biochar properties. Available biochar nutrients are linked 

to the diff erences in the composition of the original parent 

feedstock (Abdullah et al., 2010; Song and Peng, 2010; Yip 

et al., 2010), the moisture content of the feedstock (Yip et al., 

2007), pyrolysis production conditions (Bridgwater, 1994; 

Bridgwater et al., 1999; Antal and Grønli, 2003; Hossain 

et al., 2011), and postproduction handling and processing 

(Azargohar and Dalai, 2008) because these factors control the 

degree of aromaticity and potential entrapment of noncarbon 

atoms in BC carbon ring structures. Th e resulting biochar 

nutrient contents are variable based on feedstock and pro-

duction conditions, but this has been known for some time 

(Anonymous, 1840) (Table 2). Furthermore, diff erences have 

been noted in the chemistries of various biochars, despite the 

similarity in production conditions (DeGroot et al., 1991; 

Bustin and Guo, 1999). Recent advancements in pyrolysis 

conversions, particularly the process controls, have reduced 

this variability (Cantrell and Martin, 2011).

Further discussion of the various production techniques 

and impacts on the product yields are found in the associated 

references in Table 1. Th ese are average ranges of the physical 

properties and yields, but quantities vary widely as a function 

of feedstock and presence of impurities (e.g., soil) (Table 2) 

(Spokas et al., 2011). Slow pyrolysis is the conversion technique 

that maximizes biochar yield, but the other variants of hydro-

thermal carbonization and microwave-assisted pyrolysis are also 

appealing due to their ability to handle wetter biomass sources, 

which reduces biomass drying costs (Table 1). Torrefaction had 

been established in the forestry industry for fuel upgrading of 

woody biomass, primarily for densifi cation, reducing trans-

portation costs due to moisture removal and increasing heat-

ing values (Bourgois and Guyonnet, 1988), which generates 

an energy product amenable to coal-blending and subsequent 

co-combustion (Bridgeman et al., 2010; Repellin et al., 2010; 

Phanphanich and Mani, 2011). Torrefaction is a mild form 

of pyrolysis, with production temperatures ranging between 

200 and 300°C (Prins et al., 2006). However, torrefaction and 

hydrothermal carbonization are not optimal choices for bio-

char production because the oxygen to carbon (O/C) ratio of 

the resulting charred material is high (between 0.4 and 0.6) 

(Bridgeman et al., 2008), indicating lower aromatic char-

acter in the biochar (Fuertes et al., 2010). When biochar is 

produced at higher pyrolysis temperatures (400–700°C), its 

carbon is distributed in more polycondensed aromatic struc-

tures (Keiluweit et al., 2010). Th ese polycondensed aromatic 

structures have low O/C ratios that are resistant to microbial 

degradation (Glaser et al., 2002; Kimetu and Lehmann, 2010; 

Zimmerman, 2010). Th ese properties are important because 

biochar that resists microbial mineralization may be best suited 

for long-term soil carbon sequestration.
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Characteristics of the raw feedstock biomass impart specifi c 

properties to the resulting biochar, such as ash content and its 

elemental constituents, density, and hardness. Biomass with 

high elemental contents usually produces an even higher ele-

mental concentration in the ash portion of biochar (Abdullah 

et al., 2010). Particularly, biochars from grass, corn stover, and 

manure feedstocks contain higher amounts of ash than bio-

chars from other biomass sources (Brewer et al., 2009) (Table 

2). However, the ash content also can be reduced by post-

production activities, such as acid washing (DeGroot et al., 

1991). Specifi c biochar nutrient concentrations may be greater 

(Abdullah et al., 2010) or lower (DeGroot et al., 1991) than 

original feedstock nutrient concentrations. Th ese results sug-

gest that occasional volatilization and loss of nutrients during 

pyrolysis may be linked to higher production temperatures 

(Cantrell and Martin, 2011). Th e large range of operational 

maximum temperatures common to slow pyrolysis processes 

determines the extent of volatilization taking place and there-

fore the fi nal composition of the resulting biochar in terms of 

residual volatile content. During pyrolysis, a series of cleavage 

and polymerization reactions occurs, resulting in the formation 

of fi xed carbon (aromatic) structures that are thermally stable. 

Devolatilization and carbonization processes are involved, as 

described elsewhere (Aiman and Stubington, 1993; Sjöström, 

1993; Alén et al., 1996; Drummond and Drummond, 1996). 

Biochars created from grasses and manures (including poultry 

litter) appear to possess higher nutrient contents than other 

feedstocks (Table 2).

Historically, BC has been an undesirable waste product 

because the primary focus has been on optimizing the liquid 

and gas products for energy conversion and not on biochar 

for carbon sequestration. Despite the long research history 

of pyrolysis, further research is needed into the techniques 

to optimize biochar yields. Biochar is not homogenous or 

a single material; diff ering nutrient and chemical structures 

and diff ering positions in the BC spectrum lead to the lack 

of a “one-size-fi ts-all” biochar (Novak and Busscher, 2011). A 

holistic and objective approach to the production of biochar is 

vital for economic success where profi ts from all co-products 

are optimized. Th us, for a biochar to deliver an agronomic 

benefi t, it is important to understand how biochar quality 

(physical and chemical properties) is infl uenced by the choice 

of feedstock and the pyrolysis conditions used in its produc-

tion (Antal and Grønli, 2003; Lehmann and Joseph, 2009; 

Novak et al., 2009b).

Biochar Impacts on Agronomic Yields
Soil fertility is infl uenced by a number of soil properties and 

involves a complex balance of biotic and abiotic reactions 

that are spatially and temporally dynamic. Adding biochar to 

soils may produce immediate eff ects on properties such as soil 

nutrition, water retention, or microbial activity (Atkinson et 

al., 2010; Lehmann et al., 2011), although these eff ects vary 

Table 1. Description of advanced thermal conversion processes.†

Conversion 
type

Temp. 
range

Residency 
time

Heating 
rate

Product production (% of 
original feedstock mass)

Solid proximate analysis‡

Other notes

Solid Liquid Gas Moisture VM Ash Fixed C

°C °C s−1 ———————————— % ————————————

Torrefaction 200–320 hours <1 40–90 – 10–60 0–1 50–85 2–10 13–38 densifi cation and increase energy 
value of solid residuals; energy 
generation

Slow pyrolysis 350–700 hours 1–100 15–40 20–55 20–60 0–5 5–20 2–10 40–90 devolatilization and 
polymerization reactions occur; 
maximum solid (biochar) yield

Fast pyrolysis 450–550 <1 min >1000 10–30 50–70 5–15 0–5 40 30 40–60 typically fi ne powders (300–400 
μm); dust problems maximize 
bio-oil production

Flash pyrolysis 300–800 <1 s Similar to 
fast (>1000)

30–40 – 60–70 0–5 5–26 0–40 40–60 high VM potential negatives for 
soil/plant

gas/solid production; no liquid 
(oil);

elevated (~1 MPa)

Gasifi cation >800 seconds to 
minutes

Variable 0–10 – 90–100 n/a n/a n/a n/a ashes: pH and potential toxicity 
issues; conversion of biomass 
to energy (no biochar or liquid 
products)

Hydrothermal 
carbonization

150–400 Minutes to 
hours

n/a 5–40 20–40 2–10 10–40 50–90 5–15 4–10 chars less stable (higher O:C 
ratios); very high pressures (>5 
MPa)

handles wet biomass

Microwave-
assisted 
pyrolysis

300–500 minutes to 
hours

n/a 20–30 0–20 50–70 10–25 20–30 20–25 50–60 higher gas yields from microwave 
assisted pyrolysis; handles wet 
biomass

† References: Torrefacation (Bridgeman et al., 2008; Repellin et al., 2010; Phanphanich and Mani, 2011); slow pyrolysis (Apaydin-Varol et al., 2007; Pütün 

et al., 2007; Boateng et al., 2010b; Lima and Marshall, 2010); fast pyrolysis (Boateng, 2007; Boateng et al., 2010a; Boateng et al., 2010b; Lima et al., 2010; 

Mullen et al., 2010); fl ash (Antal and Grønli, 2003; Deenik et al., 2010); gasifi cation (Masclet et al., 1987; Ptasinski, 2008; Salleh et al., 2010; Fernández-

Pereira et al., 2011); hydrothermal carbonization (Molton et al., 1981; Karagöz et al., 2005; Steinbeiss et al., 2009; Yuan et al., 2009; Rillig et al., 2010); 

microwave-assisted pyrolysis (Menéndez et al., 2006; Huang et al., 2008; Lei et al., 2009).

‡ Volatile matter (VM), ash content, and fi xed carbon expressed on a dry weight basis.
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depending on soil type (Tryon, 1948; Shneour, 1966; Spokas 

and Reicosky, 2009; Van Zwieten et al., 2010b). Nonetheless, 

because of its generally recalcitrant nature, biochar may also 

have long-term impacts on soil environments. Soil formation is 

the net result of several external and internal factors that infl u-

ence or drive pedogenic processes (Jenny, 1946; Buol et al., 

2003). Biochar potentially can infl uence soil-forming processes 

that govern the accumulation, transformation, and transloca-

tion of soil constituents and hence in the long term can modify 

soil pedogenic activity, morphology, and productivity (Richter, 

2007). For biochar to serve a benefi cial role in revitalizing 

nutrient-impoverished soils, there should be a noted increase 

in the quantity of plant-available nutrients and its nutrition 

retention capacity (McLauchlan, 2006; Sohi et al., 2010). To 

understand soil–biochar interactions, we must consider how 

these eff ects vary geographically and temporally.

Assemblages of soil microbial communities and their 

interaction with organic and inorganic plant nutrient turn-

over processes are complex (Ingham et al., 1985; Zak et al., 

2003) and have a profound impact on soil functions and its 

fertility. Microbial diversity is altered in response to organic 

amendments (Pérez-Piqueres et al., 2006; Sullivan et al., 2006; 

Khodadad et al., 2011). Research has suggested that soil appli-

cations of biochar can have a signifi cant impact on microbial C 

metabolism and population dynamics (Warnock et al., 2007; 

O’Neill et al., 2009; Ball et al., 2010; Warnock et al., 2010; 

Zimmerman et al., 2011). A number of explanations for these 

impacts have been off ered, such as biochar sorption, including 

the presence of volatile organic compounds (VOCs) that can 

inhibit or stimulate microbial mineralization reactions or aff ect 

plant–microbial interactions (Graber et al., 2010; Spokas et al., 

2010), variability in biochar’s susceptibility to mineralization 

Table 2. Biochars chemical and fertilizer equivalent ratios.†

Reference Feedstock Pyrolysis
% Ash

(dry weight basis)
pH

Fertilizer equivalent ratio

N P K

°C kg per tonne of biochar

Novak et al., 2009b peanut hull 400 8.2 7.9 30 3 20

peanut hull 500 9.3 8.6 30 3 20

pecan shell 350 2.4 5.9 3 0.3 2

pecan shell 700 5.2 7.2 5 0.5 5

poultry litter 350 35.9 8.7 50 30 60

poultry litter 700 52.4 10.3 30 40 90

switchgrass 250 2.6 5.4 4 1 5

switchgrass 500 7.8 8.0 10 2 10

hardwoods 450–600 8.9 5.7 3 0.3 6

pine chips 465 5.6 6.1 3 0.8 4

Brewer et al., 2009 corn stover 500 49.7 n/a‡ 16 3 12

hardwood 500 13.9 n/a 12 0.2 2

Singh et al., 2010a wood (Eucalyptus saligna) 400 (activated) 4.2 7.7 2 0.1 2

wood (E. saligna) 550 (activated) 4.4 9.5 2 0.2 2

wood (E. saligna) 400 3.2 6.9 2 0.1 1

wood (E. saligna) 550 4.4 8.8 3 0.2 2

leaves (E. saligna) 400 (activated) 10 9.2 16 2 13

leaves (E. saligna) 550 (activated) 11.8 9.8 17 3 15

paper sludge 550 (activated) 65.4 9.2 2 0.4 0.5

poultry manure 400 42.3 9.2 52 6 25

cow manure 400 70.3 9.0 14 4 26

cow manure 550 76.2 8.9 11 5 23

Cantrell et al., unpublished dairy manure 350 24.2 9.2 30 10 14

dairy manure 700 39.5 9.9 17 17 23

feedlot manure 350 28.7 9.1 34 11 32

feedlot manure 700 44.0 10.3 17 18 49

poultry litter 350 30.7 8.7 53 21 49

poultry litter 700 46.2 10.3 22 31 74

turkey litter 350 34.8 8.0 43 26 40

turkey litter 700 49.9 9.9 20 37 56

Cantrell and Martin, 2011 swine manure 350 32.5 8.2 37 39 18

swine manure 700 52.9 8.2 26 59 26

van Zwieten et al., 2010a sludge + wood chip (49%) 550 n/a 9.4 5 n/a 0.4

sludge + wood chip (69%) 550 n/a 8.2 3 n/a 19

† These fertilizer equivalent ratios were based on the total element concentration and likely do not refl ect true eff ective plant availability following soil 

application. 

‡ Data not available in the reference.
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(Novak et al., 2009b; Zimmerman, 2010), microbial habitat 

through pH modifi cations (Atkinson et al., 2010), benefi cial 

micropores on the charcoal for microbial habitat (Warnock 

et al., 2007), or the presence of critical nutrients for micro-

bial growth and metabolic energy transfer reactions (Garcia-

Montiel et al., 2000). Th ese and other microbial impacts have 

been reviewed elsewhere (Atkinson et al., 2010; Lehmann 

et al., 2011). Th e previous list highlights the importance of 

understanding the interactions of biochar with soil microbes, 

and this knowledge is vital to improve soil quality while raising 

crop productivity.

Th e past literature indicates an early interest in the use 

of BC to improve soil and crop growth (Lefroy, 1883). Past 

studies report that BC’s eff ect on agronomic crop yield is 

variable, with production improvements ranging from nega-

tive to more than twofold over nonamended controls (Table 

3). In 1833, there was a recommendation to slowly smother 

burning biomass under a soil cover and then to rapidly col-

lect the BC and immediately apply it to improve agronomic 

performance (application rate ~0.54 kg charcoal m−2) (refer-

enced in Lefroy, 1883).

More recent biochar studies have yielded contrary results in 

soil quality and yield improvements (Table 3). A meta-analysis 

by Verheijen et al. (2009) predicted a short-term yield improve-

ment of 12% from biochar additions, although this analysis 

included a limited subset of nine recent biochar specifi c stud-

ies (since 2007). However, there was limited accountability for 

the diff erent biochar types across the diff erent studies because 

biochar itself possesses a wide range of chemistries (Table 

1). Biochar and BC additions have not consistently resulted 

in increased yields (Gundale and DeLuca, 2007; Rajkovich, 

2010; Van Zwieten et al., 2010b). Without knowledge of the 

fundamental driving factors resulting in these decreased yields, 

our ability to extract statistically signifi cant conclusions from 

existing studies is limited. From laboratory incubations, grass 

and nonwoody biomass biochar is more easily mineralized 

than wood-derived biochar, resulting in longer predicted soil 

residency times for wood biochar (Zimmerman, 2010). From 

a soil fertility perspective, this increased mineralization could 

provide nutrient resources to plants. On the other hand, food 

waste biochar (Rajkovich, 2010) and biochar with high vola-

tile matter contents (Deenik et al., 2010) have also suppressed 

plant growth.

Approximately 50% of the compiled studies observed 

short-term positive yield or growth impacts, 30% reported 

no signifi cant diff erences, and 20% noted negative yield or 

growth impacts (Table 3). However, due to potential publica-

tion biases, these percentages should only be taken as refl ective 

of the studies presented here and not as evidence of an overall 

biochar likelihood of producing positive impacts (Møller and 

Jennions, 2001). Th ere are a greater number of increased yield 

results reported for biochar additions that occurred in weath-

ered or degraded soils having limited fertility and productivity 

(Table 3). Of the 50% of the compiled studies with positive 

yield improvements, a majority of the yield improvements 

have been realized from (i) traditional kiln-formed hardwood 

charcoal or (ii) chars that possess plant nutrients (e.g., high 

N content in poultry manure biochar). Th is observation was 

also recently stated by Haefele et al. (2011), who observed 

yield increases in rice of 16 to 35% with rice hull biochar in 

a nutrient-poor soil compared with larger increased rice yields 

reported using wood biochar in similar soils (Table 3).

Numerous potential reasons exist for this apparent improved 

performance of traditional hardwood charcoal biochar. First is 

the low availability of advanced pyrolysis units. Th is limited 

availability results in a bias in the literature, with a majority of 

the studies using traditional charcoal techniques for the cre-

ation of biochar (Table 3).

Second, biochars from fast pyrolysis units have been 

extremely variable. Recently, it has been suggested that this 

variability could result from the incomplete conversion of the 

biomass feedstock due to thermal limitations and irreproduc-

ibility of heat transfer (Bruun et al., 2011). Deenik et al. (2010) 

also noted variable volatile matter content in fast pyrolysis bio-

chars. Th is translates to diff erences between batches of biochar, 

making them potentially unique despite similar production 

conditions.

Last, there are diff erences not only in biochar quality as 

a function of the production process but also linked to the 

postproduction storage or activation (Azargohar and Dalai, 

2008; Nuithitikul et al., 2010). Activation can occur by simply 

cooling the biochar with water or exposing the hot biochar 

to atmospheric oxygen during cooling. Surface oxidation of 

BC, even at ambient conditions, alters surface chemical groups 

(Puri et al., 1958; Allardice, 1966; Cheng et al., 2006), which 

correspondingly infl uences the potential interactions with soil 

nutrient cycles (Bohn et al., 1985). Traditional soil kiln char-

coal can be oxidized due to the exposure of the hot biochar to 

atmospheric air. However, often the postproduction handling 

of the biochar is not documented, which highlights the need 

for improved reporting of biochar postproduction handling 

and storage conditions.

Potential Responsible Mechanisms 

for Biochar Yield Responses
Recent studies have indicated a complex biochar and fertilizer 

interaction with respect to yield response (Chan et al., 2007). 

However, alterations in soil nutrient concentrations have not 

been able to fully predict yield increases (Turner, 1955; Gundale 

and DeLuca, 2007; Kimetu et al., 2008; Graber et al., 2010), 

suggesting involvement of other soil processes or properties. 

Biochar additions to infertile soils have been cited to improve 

soil cation exchange capacity (CEC) properties (Cheng et al., 

2006; Liang et al., 2006; Grossman et al., 2010; Inyang et al., 

2010; Lee et al., 2010). However, not all biochar–soil com-

binations cause an increase in CEC because no or minimal 

changes in CEC have also been observed after certain biochar 

additions to soils (Novak et al., 2009a; Nguyen et al., 2010) 

that have been linked to biochar production parameters (Singh 

et al., 2010a). Other studies have found that biochar addition 

may alter pH levels and the availability of soil nutrients such as 

Ca or Mg, which were found to limit maize growth in highly 

weathered tropical soils (Major et al., 2010a), or the availability 

of B and Mo, which are important cofactors in biological N 

fi xation (Rondon et al., 2007), while decreasing exchangeable 

Al3+ and H+ concentrations (Novak et al., 2009a).
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Table 3. Impacts of black carbon and biochar additions on the yield of various crops.

Reference Country Soil type Crop Addition/rate
Yield results 

(compared with control)

Asai et al., 2009 Laos Laotian paddy soils; fi eld plots rice charcoal (various) higher grain yields at sites 
with low P availability 
with biochar

Laos Laotian paddy soils; fi eld plots rice charcoal (various) reduced grain yields 
in soils with a low 
indigenous N supply

Bovey and Miller, 
1969

U.S. Toa silty clay + sand beans (Phaseolus 
vulgaris L.)

activated charcoal 
(640 mg kg−1)

+26% (yield increase)

U.S. sand cucumbers activated charcoal 
(640 mg kg−1)

−15% (yield reduction)

U.S. Toa silty clay cucumbers and oats activated charcoal 
(0–1% w/w)

+54% oats +77% 
cucumbers

Chen et al., 2010 Japan Shimajiri maji soil (heavy clay) sugarcane sugarcane bagasse 
biochar (3% + 
fertilizer)

increased sugarcane yield

Colauto et al., 
2010

Brazil compost/soil mushroom (Agaricus 
brasiliensis)

charcoal (?) (charcoal 
as casing layer)

−50%

Constantin et al., 
1977

U.S. culture media tobacco (Nicotiana 
tabacum)

activated charcoal sorbs plant hormones, 
inhibiting callus and shoot 
development (negative 
eff ects observed)

de Keijzer and 
Hermann, 1966

U.S. laboratory/fi eld various conifer species charcoal (various) summarizes impact on 
germination of conifer 
species (positive, 
negative, and no impact)

fi eld plot douglas-fi r charcoal (various) increased germination 
tied to increased soil 
temperature

Deenik et al., 
2010

U.S. greenhouse/lab lettuce and corn fast pyrolysis 
macadamia nut 
shell (0–20% by wt)

yield decreases observed

Devonald, 1982 U.K. growing media garden peas (Pisum 
sativum)

activated charcoal 
(5% w/w)

signifi cant decrease in 
shoot height/rot mass 
and nodulation in peas

Gaskin et al., 
2010

U.S. Tifton loamy sand soil (Plinthic 
Kandiudult)

corn pine chip biochar (0, 
11.2, 22.4 Mg ha−1)

2006: decrease with 
increasing BC†;

2007: increase with BC 
amounts

U.S. Tifton loamy sand soil (Plinthic 
Kandiudult)

corn peanut hull biochar 
(0, 11.2, 22.4 Mg 
ha−1)

decreases/increases;
no statistically signifi cant 

pattern

Gundale and 
DeLuca, 2007

U.S. sandy-skeletal, mixed, frigid Typic 
Dystrustepts

perennial grass (Koeleria 
macrantha)

laboratory produced 
charcoal (350°C, 2 
h); various rates

yield suppressions 
(Conclusion: Diff erences 
existed between wildfi re 
charcoal and laboratory 
created charcoal.)

wildfi re charcoal, 
various

yield increases (correlated 
with amount of charcoal)

Haefele et al., 
2011

Philippines anthraquic Gleysols rice rice husk biochar 
(traditional)

initial negative; after fourth 
season no signifi cant eff ect

Philippines Humic Nitisols rice rice husk (traditional) no signifi cant eff ect

Thailand Gleyic acrisols rice rice husk biochar 
(traditional)

positive eff ects; poorest 
soil and most draft stress 
16–35% yield increase

Herr et al., 1999 U.S. forest soil white pine (Pinus strobus L.) lab burnt wood ash no diff erences

Hossain et al., 
2010

Australia chromosol tomato (Lycopersicon 
esculentum)

wastewater sludge 
biochar (10 t ha−1)

+64% with fertilizer 
additions

Iswaran et al., 
1980

India Delphi agricultural soil (no 
description)

moong (Vigna radiata) charcoal 
(500 kg ha−1)

+20%

soybean (Glycine max) charcoal (500 kg ha−1) +50%

pea (Pisum sativum) charcoal (500 kg ha−1) +60%

moong (V. radiata) coal (500 kg ha−1) +30%

soybean (G. max) coal (500 kg ha−1) +140%

pea (P. sativum) coal (500 kg ha−1) +70%
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Reference Country Soil type Crop Addition/rate
Yield results 

(compared with control)

Kadota and Niimi, 
2004

Japan potting mix bedding plants charcoal + PA negative growth shown 
in French marigold and 
scarlet sage; positive 
eff ects for melampodium, 
scarlet sage, and zinnia

Kim et al., 2003 Korea unknown red pepper charcoal small particle size: 
increased yield; large 
particle charcoal: 
decreased root growth; 
no yield diff erences

Kimetu et al., 
2008

Kenya Ultisol corn biochar (traditional 
kiln) Eucalyptus 
saligna (7 tons BC 
ha−1)

+80 to +100%

Kratky and Warren, 
1971

U.S. vermiculite + activated carbon 
(greenhouse)

cucumbers (Cucumis 
sativus L.)

activated charcoal 
(7% w/w)

no diff erences

Kratky and Warren, 
1971

U.S. vermiculite + activated carbon tomatoes (Lycopersicum 
esculentum)

activated charcoal 
7% (w/w)

no diff erences

Kratky and Warren, 
1971

U.S. fi eld plot soil (Indiana soil) tomatoes (L. esculentum) activated charcoal 
7% (w/w)

no diff erences

Kulmatiski and 
Beard, 2006

U.S. coarse-loamy, mixed mesic typic 
haploxerolls (fi eld plots)

native and exotic grassland 
vegetation

activated charcoal 
(1% w/w)

no diff erences fi rst year; 
second year: increased 
plant cover, heterotrophic 
bacteria diff erences noted

Lamb et al., 
unpublished

U.S. Greenville fi ne sandy loam (fi ne, 
kaolinitic, thermic Rhodic 
Kandiudults)

peanut, corn, and cotton fast pyrolysis, 
hardwood (22,500 
& 45,000 kg ha−1)

no diff erence (year 1- 
ongoing)

Lau et al., 2008 various various various various activated 
charcoals, various 
rates

positive and negative; 
mostly positive eff ects 
observed

Leibundgut, 1960 Germany litter compost conifer charcoal (beech 
wood) (0.5–2 kg 
m−2)

no signifi cant eff ect on 
germination; some 
inhibition on conifer 
seedling growth observed

Linscott and 
Hagin, 1967

U.S. (NY) Lima silty clay loam alfalfa activated charcoal (8 
lbs per acre)

50% increase; not 
statistically signifi cant

Mohamed-
Yasseen, 2001

Egypt culture media corn activated charcoal (5 
g L−1)

longer shoots and roots in 
the presence of charcoal

Namgay et al., 
2010

Australia Quartzipsamment corn wood; slow pyrolysis 
(550°C) (0, 10, and 
50 mg kg−1)

no signifi cant diff erences 
in shoot dry matter yield 
(10 wk)

Noguera et al., 
2010

Colombia inceptisol rice charcoal (wood) (0.2 
and 0.5% w/w) (lab 
produced)

+30 to +200%

Nutman, 1952 U.K. test tube/no soil clover charcoal (0.5–2% 
w/w)

benefi cial increases in 
nodulation; does not 
occur if charcoal is ashed

O’Toole, 2010 Norway Fluvic cambisol rye grass (Lolium 
perenne L)

wheat-straw biochar 
(up to 30% w/w)

no eff ect with fertilizers; 
without or low 
fertilization: negative 
yield impacts

Oguntunde et al., 
2004

Ghana compared charcoal kiln soils corn compared wood 
charcoal kiln soils 
with non kiln soils 
(unknown rates)

+90%; observed 
diff erences were not fully 
explainable by nutrient 
availability

Rajkovich, 2010 U.S. silt loam and loam corn variety of feedstocks 
examined; food 
wastes, paper mill 
wastes, wood, and 
manures at various 
temperatures (0.2, 
0.5, 2, and 7% w/w)

decreased biomass seen 
in about one third of the 
tested mixtures: food 
wastes biochar (−18 to 
−85%), papermill biochar 
(−85%), +17% increase in 
poultry manure biochars 
(+17%)

Rondon et al., 
2007

Columbia clay–loam oxisol (Typic Haplustox) beans (P. vulgaris L.) kiln charcoal (0, 30, 
60, and 90 g kg−1 
soil)

46% (≤60); >90 resulted in 
yield decrease

Rutto and 
Mizutani, 2006

China growing media peach activated charcoal 
(unknown)

no diff erences

Table 3. Continued.
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Other explanations for biochar’s crop yield impact have 

ranged from N immobilization leading to decreased N avail-

ability due to the high C/N biochar ratios (Rondon et al., 

2007), liming eff ects of the biochar (Verheijen et al., 2009), 

reduced plant availability of macronutrients due to pH altera-

tions (Hiradate et al., 2007; Makoto et al., 2010), and direct 

sorption of soil nutrients (Asai et al., 2009). Asai et al. (2009) 

tested the infl uence of biochar additions on a variety of soil 

types at 10 diff erent locations and observed yield increases in 

soils with low P availability and improved plant response to 

Reference Country Soil type Crop Addition/rate
Yield results 

(compared with control)
Solaiman et al., 

2010
Australia sandy clay loam (fi eld) wheat (Triticum aestivum) biochar (0, 1.5, 3.0, 

and 6 t ha−1)
increased yields at low 

fertilizer rates; no 
signifi cant diff erences at 
recommended levels

Sorensen et al., 
unpublished

U.S. Greenville fi ne sandy loam (fi ne, 
kaolinitic, thermic Rhodic 
Kandiudults)

cotton fast pyrolysis 
hardwood (22, 45, 
89, and 135 Mg 
ha−1)

no diff erence (year 1)

Spokas, 
unpublished

U.S. Waukegan silt loam (fi ne-silty over 
skeletal mixed, super active, mesic 
Typic Hapludoll) Field plots

corn fast pyrolysis sawdust 
biochar (22,460 kg 
ha−1)

no diff erence (year 1)

corn slow pyrolysis 
woodwaste (22,460 
kg ha−1)

no diff erence (year 1)

corn slow pyrolysis wood 
pellet biochar 
(22,460 kg ha−1)

no diff erence (year 1)

potting soil mix (greenhouse 
experiment)

lettuce, spinach, radish fast pyrolysis 
macadamia nut 
(10% w/w)

signifi cant decrease 
in growth rate, 
germination timing, and 
biomass production 
observed with biochar

potting soil mix (greenhouse 
experiment)

lettuce, spinach, radish slow pyrolysis wood 
pellet biochar (10% 
w/w)

Steiner et al., 
2007

Brazil Xanthic Ferralsol (weathered) rice (Oryza sativa L.) and 
sorghum (Sorghum bicolor 

L.) rotation

charcoal (forest 
wood) (11 Mg ha−1 
charcoal (reference 
has 11 mg ha−1 , 
assumed Mg)

+170% with fertilizer; 
charcoal additions 
alone did not increase 
production

Suhardi et al., 
2006

Indonesia Bukit Suharto experiment fi eld Shorea leprosula charcoal + fertilizer 
(0–100 g of charcoal 
per plot)

no impact on height, 
plant diameter or 
mycorrhizal formation

Tagoe et al., 2008 Africa soybean chicken manure BC +41%

cowpea chicken manure BC +146%

soybean municipal organic 
waste biochar

+20%

cowpea municipal organic 
waste biochar

+59%

Topoliantz et al., 
2005

French 
Guiana

Oxisol bean (V. unguiculata 
sesquipedalis)

charcoal (wood) increased yield with green 
manure (manioc peels)

Vaccari et al., 2011 Italy silty loam wheat wood charcoal 20–40% increase (only 
signifi cant at P = 0.10)

Vantsis and Bond, 
1950

U.K. sand clover wood charcoal (0.5–
2% w/w)

increases in dry weight 
and nitrogen fi xation

clover animal charcoal 
(bone) (0.5–2% 
w/w)

inhibition of growth

clover activated charcoal 
(0.5–2% w/w)

increases in dry weight & 
N fi xation

Wang and Huang, 
1976

Taiwan culture media various activated charcoal (3 
g L−1)

improves growth by 
sorbing toxic metabolites

Yamato et al., 2006 Indonesia Indonesia farmland soils (weathered) corn Acacia mangium (kiln 
bark charcoal), 10 
L m−2

site A: +190%; site B: no 
diff erence

Indonesia farmland soils (weathered) cowpea A. mangium (kiln bark 
charcoal), 10 L m−2

no diff erences

Indonesia farmland soils (weathered) peanut A. mangium (kiln bark 
charcoal), 10 L m−2

site A: +100%; site B: no 
diff erence

Zhang et al. 2011 China Entic halpudept rice wheat straw biochar 
(10 and 40 t ha−1)

8–14% increase

† Black carbon.

Table 3. Continued.
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additional fertilizers with biochar additions. However, these 

fi ndings are not universal; even fertilizer plus biochar addi-

tions have resulted in suppressed yields in some cases (e.g., 

Table 3). Th erefore, soil nutrient status alone is not suffi  cient 

to explain all the crop responses observed but could be impor-

tant after biochar amendments to weathered and low N- and 

P-containing soils due to fertilization (Table 2).

Th ere are additional potential mechanisms responsible for 

biochar’s eff ect on agronomic yield. Studies have shown altered 

rates and timing of seed germination as a function of biochar 

additions (e.g., de Keijzer and Hermann, 1966; Rillig et al., 

2010). Diff erences in germination and consequentially plant 

emergence could infl uence plant growth and yield due to the 

timing of precipitation and accumulation of thermal time. 

In other words, plant seeds that are simultaneously sown in 

biochar-amended and non–biochar-amended soils that emerge 

at diff erent times are also temporally equivalent to a varying 

planting date. Diff erences in planting date in fi eld plots have 

been observed to aff ect plant growth and yield due to the 

timing of precipitation and accumulation of growing degree 

days (Egli and Bruening, 1992).

Biochar can also sorb, release, or catalyze transformations 

of compounds that aff ect plant and microbial growth. Black 

carbon has been observed to catalyze abiotic transformations of 

nitrogen-containing compounds (i.e., ammonia, nitric oxide, 

nitrate, or nitrous oxide) even at ambient conditions (Chang 

and Novakov, 1975; DeGroot et al., 1991; Aarna and Suuberg, 

1997), particularly linked to ammonium formation from other 

N forms (Chang and Novakov, 1975). Black carbon has also 

been observed to catalyze the transformation of sulfur com-

pounds, leading to the formation of sulfates (Novakov et al., 

1974). Despite the fact that some of these studies investigated 

nonbiomass BC forms, biochar is BC and could possess chem-

istries similar to nonbiomass source BC as a function of pro-

duction and processing conditions (Spokas, 2010). In addition 

to direct abiotic transformation of soil nutrients, the sorption 

of soil inhibitory chemicals by BC was hypothesized to be 

responsible for alterations in clover nodulation (Turner, 1955). 

Th e role of volatile organics in soil microbial and plant signal-

ing is an emerging fi eld (Insam and Seewald, 2010). In some 

cases, these VOCs may be sorbed by biochar particles (Turner, 

1955; Warnock et al., 2007), whereas at other times VOC may 

be emitted from biochars (Spokas et al., 2010). Th is release or 

sorption of VOCs may cause plant allelopathic reactions and 

may inhibit or stimulate microbial functionality and positive 

or negative plant eff ects (Deenik et al., 2010; Graber et al., 

2010). However, these chemical eff ects would be dependent 

on soil, microbial, plant, and biochar properties. Th erefore, 

this role of biochar sorbing or releasing inhibitory chemicals 

could explain seemingly contradictory results because the eff ect 

would be a function of the respective concentration thresholds 

for the specifi c microbe or plant. However, the commonality of 

this hypothesis is lacking because characterization of the sorbed 

compounds is not a typical analysis conducted on biochar.

Biochar-induced yield improvements are further compli-

cated by the occasional delayed response, with negative or 

no impact in the initial year followed by yield increases of 

varying degrees in subsequent years (Kulmatiski and Beard, 

2006; Gaskin et al., 2010; Major et al., 2010b). Th ese 

delayed responses are hypothesized due to aging of the bio-

char (e.g., oxidation or other chemical alteration) (Puri et 

al., 1958; Allardice, 1966; Cheng et al., 2006; Singh et al., 

2010b). Chemical or thermal biochar activation drastically 

alters the surface chemistry (Azargohar and Dalai, 2006, 2008; 

Nuithitikul et al., 2010). Chemisorption of oxygen by biochar 

also alters the surface chemistry (Puri et al., 1958) and micro-

bial degradability (Cheng et al., 2008), which could aff ect 

biochar nutrient availability. Th ese abiotic chemisorption reac-

tions occur at ambient conditions (Itay et al., 1989), which 

have only received limited attention in the biochar literature 

(Cheng et al., 2006; Spokas et al., 2009; Zimmerman, 2010; 

Jones et al., 2011). Th ese postprocessing reactions can drasti-

cally alter the biochar and resulting observed impacts, which 

again highlights the need for documenting postproduction 

handling and storage of biochar.

Th e infl uence of biochar on soil fertility may be positive or 

negative depending on the quality and rate of biochar applied, 

with some uncertainty as to the exact mechanisms. As with 

soil application of other byproducts (Sumner, 2000; Ippolito et 

al., 2011), an application of high-nutrient biochar that exceeds 

recommended fertilization rates may unbalance soil nutrient 

levels, produce little improvement in soil nutrient retention, 

and increase nutrient leaching potentials. Some biochar nutri-

ents are leachable despite the observations of nutrient sorption 

(Ding et al., 2010). Although control soils had no detectable 

soluble N or P in the leachate, the fi rst leachate collected from 

soils treated with poultry litter biochar contained 3 and 8 μg 

mL−1 of NH
4
–N and NO

3
–N, respectively, and 36 μg mL−1 

dissolved P concentrations (Novak et al., 2009b). Th e addition 

of hardwood charcoal to a typical Midwestern agricultural soil 

(Hapludoll) in a laboratory column study substantially reduced 

P and N nutrient leaching from a subsequent manure addition 

compared with controls, with greater reductions correlated 

with increasing charcoal rates (Laird et al., 2010a). However, 

the amounts of K, Mg, Zn, Ca, and total N leached from the 

columns only receiving charcoal were greater than the control 

columns, hence the conclusion that some charcoal nutrients 

are partially leachable (Laird et al., 2010b).

Soil nutrient improvements may take some time to be 

observed. One could envision a delay if the particular element 

is enclosed in a chemical ring structure because the kinetics of 

surface functional group oxidation and cleavage of ring struc-

tures would be rate limiting (Glaser et al., 2002; Liang et al., 

2006; Yao et al., 2010). However, a majority of the existing 

studies have been limited to less than 3 yr, which may not be 

enough time for the soil nutrient cycle to be aff ected.

In conclusion, plant responses to biochar additions are the 

net result of production (e.g., feedstock and pyrolysis con-

ditions) and postproduction (storage or activation) condi-

tions. Th ese processes can infer potentially unique properties 

to each batch of biochar, even from the same pyrolysis unit 

and biomass feedstock. Th e mechanisms resulting in negative 

plant impacts need to be fully understood due to the sig-

nifi cant plant biomass reductions (35–87% of nonamended 

soil controls) that have been cited as a function of feedstock 

and production temperatures (Table 3). However, production 

temperature alone cannot describe the variability in labora-

tory biochar microbial impact assessments (Spokas, 2010). 
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Due to the lack of universal properties and characterization 

reported in biochar studies, full elucidation of the responsi-

ble processes from literature studies is unfeasible and requires 

additional detailed studies (Lehmann et al., 2011), particu-

larly documenting biochar production and postproduction 

handling. Based on the available data, the processes by which 

biochar improves plant growth and yield are debatable, but 

this knowledge is critical to fully optimize biochar for agro-

nomic purposes.

Biochar Economics
Assessing the economic feasibility of biochar requires evalua-

tion of the entire system, which starts with feedstock produc-

tion and preparation, transportation to the pyrolysis unit, net 

energy consumption or production of the pyrolysis process 

itself, storage, and biochar utilization, including transportation 

and application costs. Some of these costs could be off set by the 

other products that are typically coproduced with biochar and 

by potential sustained biochar benefi ts. At the pyrolysis facil-

ity that targets energy production, biochar represents a loss in 

energy production, which is a loss of revenue. As an aside, bio-

char can be used as an energy source (Boateng, 2007; Abdullah 

and Wu, 2009; Abdullah et al., 2010). However, this use of 

biochar as a fuel would not fall under the defi nition of biochar 

because there is no carbon sequestration. Direct energy use of 

biochar will be a competing use to carbon sequestration.

Increasing soil aggregation, water infi ltration, and water-

holding capacity may also reduce irrigation costs, especially in 

semiarid environments. Drought and subsequent crop stress 

is common in the arid western United States, and thus irriga-

tion is commonly used to meet crop water demands. Soils in 

the arid to semiarid regions of the U.S. Pacifi c Northwest are 

typically fi ne-textured Aridisols and Mollisols that inherently 

have a high water-storage capacity. However, irrigation water 

quickly evaporates; consequently, the length of time that soil 

water is available for crops after irrigation or precipitation is 

of paramount concern. In a laboratory column leaching study, 

Brockhoff  et al. (2010) observed an increase of 370% in water-

holding capacity under gravity drainage after a 25% (v/v) bio-

char addition to sand. An increase in soil moisture storage due 

to biochar application could be appealing to crop producers in 

the semiarid to arid regions of the United States and in other 

drought-plagued regions around the world with limitated irri-

gation water availability. For the agricultural producer, the cost 

of biochar must be low enough that the benefi ts of soil applica-

tion exceed the total cost of biochar application or the cost of 

applying additional irrigation water.

Select economic analyses have been conducted looking at the 

entire system. Roberts et al. (2010) conducted a life cycle assess-

ment of biochar systems using corn stover, switchgrass, or yard 

wastes as feedstocks for greenhouse gas (GHG) off set values of 

$20 Mg−1 CO
2
 equivalents (CO

2
e) and $80 Mg−1 CO

2
e. Only 

the yard waste feedstock could profi tably be used for pyrolysis 

with $20 Mg−1 CO
2
e. However, all feedstocks were profi table 

at $80 Mg−1 CO
2
e, with the exception of one switchgrass sce-

nario, where switchgrass production led to large indirect land use 

changes that negated the GHG benefi ts. Th is analysis assumed 

that 80% of the C in biochar was stable, with the remaining 

20% released as CO
2
 within the fi rst few years of application 

(Roberts et al., 2010). Th is assumption is questionable given 

the fact that biochar is not a singular homogeneous product 

and that the degradability is directly tied to the overall chemis-

try (Spokas, 2010), which varies greatly as a function of biochar 

type (Zimmerman, 2010) as well as the variability of the biochar 

itself (Hedges et al., 2000). Th e analysis also assumed that there 

were no yield benefi ts to biochar application but that N, P, and K 

fertilizer use was reduced by 7.2% with biochar application and 

N
2
O emissions were reduced by 50%. Th ese may or may not be 

realistic assumptions due to the complex interaction of biochar 

and soil N-cycling and due to variations in the responses due to 

biochar and soil types as previously described.

McCarl et al. (2009) showed that both fast and slow 

pyrolysis production of biochar from corn stover was not 

economically feasible. Th e results were sensitive to pyrolysis 

facility costs, GHG off set price, energy prices, and impacts 

of biochar on crop yields. Th e analysis showed that pyrolysis 

would be profi table with GHG off set prices of more than 

$58 Mg−1 CO
2
e or $71 Mg−1 CO

2
e for fast or slow pyrolysis, 

respectively. Th e analysis also showed that pyrolysis would be 

profi table for biochar prices greater than $450 Mg−1 or $246 

Mg−1 for fast or slow pyrolysis, respectively. Th ese prices were 

substantially greater than the 2008 biochar energy value from 

combustion ($55 Mg−1) or soil application value ($47 Mg−1) 

(McCarl et al., 2009). Th e soil application value was based 

on the assumption of a persistent 5% maize yield increase 

and annual input cost savings of $73 ha−1 due to reductions 

in need for nutrients, lime, and seed but did not include 

the value of any GHG off sets. Th e estimated soil applica-

tion value might be conservative if the short-term 12% yield 

improvement indicated in the Verheijen et al. (2009) meta-

analysis was obtained with maize production and was pres-

ent for many years after biochar application. Th e magnitude 

and persistence of yield benefi ts are key to understanding the 

potential economic value of biochar application.

Granatstein et al. (2009) conducted an economic analysis 

on pyrolyzing biomass from forest thinning. Results showed 

that the lowest breakeven cost for a facility producing bio-

char was $87 Mg−1 biochar for a stationary facility and up 

to $1,742 Mg−1 biochar for a mobile unit. Th e potential 

impacts of GHG off sets were not included in the analysis. In 

a related study, Galinato et al. (2010) analyzed the profi tabil-

ity of applying biochar instead of agricultural lime to winter 

wheat fi elds in eastern Washington. Th e only crop production 

impact of the biochar included in the analysis was the eff ect 

on crop yields through changing soil pH. Without GHG 

off set payments, analysis showed that the biochar price would 

need to be less than $4.34 Mg−1 for biochar application to be 

more profi table than lime. Th e breakeven biochar price for 

the farmer, or the price farmers would be willing to pay, will 

increase with increasing GHG off set payments, assuming the 

GHG off set is paid to the farmer. For example, given a GHG 

off set payment of $31 Mg−1 CO
2
e, biochar application is more 

profi table than lime application for biochar prices less than 

$96 Mg−1 (Galinato et al., 2010). At this level, the agricultural 

value exceeds the lowest breakeven cost for a stationary facility, 

indicating the potential for profi table production of biochar.
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Galinato et al. (2010) also alluded to an important aspect 

of evaluating the value of biochar for fi eld application. 

Comparisons must be made with the next most profi table 

alternative, not simply a no-biochar alternative. Th e break-

even price of biochar using this comparison was always higher 

than the price relative to the alternative with agricultural lime 

because this was the most profi table practice. Th erefore, omit-

ting relevant biochar alternatives from the analysis can falsely 

skew the predicted value of biochar.

Focusing on the value of CO
2
 reductions, Gaunt and 

Lehmann (2008) determined that biochar application to agri-

cultural land would provide greater GHG emission reduc-

tions than using biochar for electricity generation. However, 

the costs of achieving the additional GHG emission through 

soil application ranged from 9 to $16 Mg−1 CO
2
e. Th is cost 

was based on the value of lost electricity generation and did 

not include the value of any agricultural production benefi ts. 

Th e calculated GHG emission reductions with biochar addi-

tion did, however, assume a fertilizer reduction of 10%, which 

would result in a 50% reduction in N
2
O emissions, and that 

the eff ect of biochar would remain for 10 yr after application.

A combined biochar life cycle and cost-benefi t analysis was 

conducted by Tejerina (2010). Th is analysis used monetary, 

energy, and GHG balances (assuming a 10% fertilizer savings 

and a 5% yield increase with biochar) in the context of a devel-

oping country under three diff erent management scenarios: (i) 

biochar for soil application, (ii) bio-coal production, or (iii) 

current management (residue left on the fi eld). Th e results 

showed corn stover used for biochar production and soil appli-

cation as providing the greatest net energy and positive revenue 

potential over bio-coal production or leaving the residue in the 

fi eld. However, the results for a developed country could be 

drastically diff erent due to economic diff erences in the assumed 

costs for labor, machinery, transportation, and energy.

In each of these above cases, the value of biochar for fi eld 

application was sensitive to uncertainties associated with the 

annual value of benefi ts (or costs) that result from soil appli-

cation and the duration of these benefi ts (or costs). Annual 

benefi ts may accrue if a biochar application increased yields 

or reduced production costs. However, our ability to extract a 

defensible yield improvement prediction from the existing data 

is hampered by insuffi  cient biochar characterization data cou-

pled to the lack of uniform yield responses (Table 3). Wood-

based biochars, which typically increase agronomic yields, are 

the biochars with the lowest nutrient contents (Table 2). Th e 

GHG off set payments associated with avoided emissions due 

to reduced fertilizer, pesticide, or other inputs use may also be 

included as annual benefi ts once the duration of these ben-

efi ts is known. Long-term, small annual biochar benefi ts can 

produce high value to farmers over time. Th is means that bio-

char application is economically feasible at the fi eld-scale if it 

is available to farmers at a cost less than a break-even value. 

However, the amount farmers are willing to invest in biochar 

applications will be directly related to the certainty of attaining 

the degree and persistence of predicted annual benefi ts. On the 

other hand, any potential persistent negative cost eff ects can 

substantially reduce the value of biochar to the farmer.

Th e value of GHG off set payments is typically based on 

permanent GHG off sets, so the soil carbon sequestration value 

of biochar application would have to be included as a one-time 

benefi t in the above analysis and not as a repeating annual ben-

efi t. In addition, the value would be reduced if sequestration 

was not long-term. Furthermore, the lack of standardization in 

the accounting of renewable energy system GHG assessments 

creates systematic biases that can lead to over- or underestima-

tion of the net GHG impacts (Whitman and Lehmann, 2011).

Potential Specialized Markets
Th e possibility of niche specialized uses of biochar could sub-

stantially improve the economic picture for biochar utilization, 

particularly engineering “designer biochars” for improving 

a specifi c soil defi ciency (Novak and Busscher, 2011). For 

example, there have been eff orts at impregnating biochar with 

inorganic fertilizers to serve as a slow-release fertilizer (Khan et 

al., 2008) and to provide localized crop protection from her-

bicides, pesticides, and other chemicals (Fink, 1934; Linscott 

and Hagin, 1967). Biochar could be blended with compost 

(Rosenfeld, 2001; Rosenfeld and Henry, 2001; Steiner et al., 

2010), which could increase biochar’s value, particularly if bio-

char application for bedding plants is benefi cial (Kadota and 

Niimi, 2004).

Biochar might be useful for controlling selected invasive or 

nuisance species of animals (Mason and Clark, 1994, 1995) 

and plants (Kulmatiski and Beard, 2006). Biochar may off er 

the potential as a means for contaminated site cleanup (Cao 

and Harris, 2010). An example could be reducing soil copper 

contamination resulting from irrigation with water from spent 

copper sulfate (CuSO
4
) dairy hoof bath lagoons (Ippolito et 

al., 2012) or as a potential remediation tool for acid mine soils 

(Novak and Busscher, 2011).

Biochar use does not have to be limited to soil application. 

Biochar could be suitable as a precursor to generate activated 

carbon, which is commonly used in industrial fi ltration pro-

cesses (Azargohar and Dalai, 2006). However, the produc-

tion of activated charcoal requires extra conditioning steps, 

which reduces the economic return (Lussier et al., 1994). 

Several studies have examined biochar and activated biochar 

use in municipal wastewater treatment (Ng et al., 2002, 2003; 

Bansode et al., 2004; Lima and Marshall, 2009), in mercury 

removal from fl ue gas (Klasson et al., 2010), and in other 

water fi ltering systems (van Duck and van de Voorde, 1984). 

However, for biochar to be used for potable water fi ltration, the 

potential for bacterial growth and organic contaminates on the 

biochar needs to be further investigated (Wallis et al., 1974). 

Other potential uses of biochar include use as a nutrient recov-

ery agent (Streubel et al., 2010), as an additive for reducing 

the bioavailability and mobility of toxic trace metals (Beesley 

and Marmiroli, 2011; Uchimiya et al., 2011), as a contaminant 

mitigation agent (Beesley et al., 2010), or as a material for iron 

and steel production (de Beer et al., 1998). Potential markets 

in laboratory settings exist for biochar, including solid-phase 

microextraction fi bers (Wan et al., 1994), electroanalytical 

chemistry electrodes (Tavares and Barbeira, 2008), or bio-

char-based DNA hybridization biosensors (Wang and Kawde, 

2001). Spent biochar could be examined for uses in landfi ll 

covers for odor and bird control (Mason and Clark, 1994). 

Furthermore, the potential use of biochar as a sorbent media 
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for scrubbing CO
2
 from fossil fuel stack emissions warrants 

additional research because this could off er additional carbon 

sequestration potential for biochar (Mercedes Maroto-Valer et 

al., 2008). All of the above applications preserve the carbon 

sequestration potential. In addition to direct applications, the 

use of biochar as a green product label also off ers potential tar-

geted economic advantages (Yoder and Galinato, 2009).

We acknowledge that biochar is expensive as a carbon 

sequestration agent or as a soil supplement for crop yield 

improvements. However, the high production cost for bio-

char could be off set if these specialty or boutique markets are 

more fully developed. Th e key is to diversify biochar applica-

tions to other sectors, which could result in reduced costs for 

production.

Future Needs
Just as economics caused the shift from biomass to fossil fuels 

in the early 1920s, civilization is currently at the cusp where 

environmental stewardship is returning the pendulum back to 

biomass as the source for human’s energy, chemical, and agro-

nomic needs. Given this return to biomass, there are several 

factors that should be considered as we move forward:

• Th ere is a fundamental need to recognize that biochar 

does not refer to one singular product; it refers to 

the range of potential products produced for carbon 

sequestration purposes.

• Th ere is a vital need to fully document the production 

style, biomass conditions, and pyrolysis conditions of the 

biochar production, but almost equally important is the 

time since biochar production, postproduction handling, 

and storage conditions. Th is is especially evident given the 

importance of the surface chemistry on overall biochar 

chemistry and resulting environmental interactions.

• As seen in several aspects of this review, the lack of 

adequate data has limited the ability to use the historic 

data in meta-analyses to elucidate driving variables. Th is is 

due to the lack of consistency in biochar characterization 

and documentation, which is partially a result of the 

incomplete understanding of the mechanisms responsible 

for agronomic yield improvements. In other words, what 

properties do we want biochar to possess?

• Th e studies using traditional kilns and production systems 

without industrial controls are further suspect because 

there is no documentation on production parameters (e.g., 

pyrolysis temperature, oxygen status, etc.) or repeatability 

of the biochar production style.

• Th ere is also a need to overcome the terminology and 

defi nition hurdles and to separate the soil impacts of 

biochar additions from the biochar itself. Th is is needed 

to continue the development of biochar as a stable carbon 

form that could be considered for carbon sequestration 

markets. Th e potential end uses for biochar are virtually 

limitless, and these specialized market niches potentially 

could increase the economic value of biochar.

• Th ere is a need for the creation of an international 

pool of well characterized biochars for systematic 

research (Lehmann et al., 2011). Furthermore, these 

biochars need to come from a variety of sources with 

well documented production systems to achieve a cross-

sectional sampling required for such an eff ort. Th is 

eff ort could be coordinated by the American Society 

of Agronomy’s Biochar Community (https://www.

agronomy.org/membership/communities/biochar-

agronomic-and-environmental-uses).

• We need to better understand how biochar’s production 

conditions infl uence its quality and subsequent eff ects on 

the soil–plant systems, which would lead to more accurate 

guidance for biochar amendment management.

A tipping point is being approached where global demand 

for food will exceed production. Despite the current fore-

casted economics, the fact that biochar has the potential to 

improve soil quality and provide benefi ts to nonproductive 

and degraded soils justifi es continued research eff orts into bio-

char’s soil quality impacts. Continued research can optimize 

biochar production for the overall health and fertility of our 

soil resources, which represent our most vital asset in the cur-

rent bioenergy renaissance and are the fundamental foundation 

for food security.
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